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for human development and global 
environmental changes, barring climate 
change mitigation beyond what is in place 
today. Scenarios range from green growth 
and environmental sustainability (SSP1) to 
intensive energy and resource development 
(SSP5)24. Some of these scenarios will be 
used in a framework with the Representative 
Concentration Pathways to drive climate 
projections under Phase 6 of the Coupled 
Model Intercomparison Project for the 
forthcoming IPCC assessments. None of 
the baseline SSP CO2 emissions scenarios 
reach zero by 2100 ce, so cumulative 
emissions and the associated committed SLR 
derived from them are minimum estimates 
(Supplementary Information). We also 
consider a hypothetical mitigation scenario 
by extending the baseline CO2 emissions 
down to zero by 2155 ce (see Supplementary 
Information for details), thus providing 
a finite and likely minimum value of 
cumulative carbon emissions for evaluating 
implications of the baseline SSPs to SLR. The 
baseline SSP5 scenario with our declining 
extension has the highest cumulative carbon 
emissions of the scenarios evaluated here 
(3,596 GtC, including historic emissions), 
leading to GMSLR of 3.7 m (2.7 to 4.8 m) 
by 2300 ce and 41.6 m (37.8 to 45.3 m) 
by 9000 ce (Fig. 1b and Supplementary 
Information). Following scenarios that limit 
warming to 1.5 °C or 2 °C would strongly 
limit these GMSLR projections, but far from 
eliminate the risks (Fig. 1a).

The relationship between cumulative 
carbon emissions and GMSLR developed 
here is based on a small number of models. 
Refinements will require more process 
studies and modelling to better quantify the 
uncertainties in the relationships that arise 
from ice-sheet feedbacks on climate, ice-
sheet dynamics and long-term carbon cycle 
changes. Moreover, mitigation scenarios that 
limit global mean temperature rise to 1.5 °C 
or 2 °C are often associated with negative 
emissions in the latter part of the twenty-first 

century (Supplementary Information)5. It 
is likely that committed SLR for these and 
similar scenarios would be less if such negative 
emissions were to continue beyond the 
twenty-first century25–28,29, but further work  
is required to better quantify this response.

As these processes and uncertainties 
become better constrained, quantitative 
relationships may provide a basis for 
assigning responsibility30. They may  
also be incorporated into long-term 
planning in the coastal zones subject to 
inundation, and in those areas where 
vulnerable populations are likely to relocate9. 
Finally, in conjunction with risks posed 
by increasing global mean temperature6, 
our analysis of SLR will further inform 
policy for identifying an emissions limit 
that will prevent or mitigate the dangerous, 
and essentially permanent, anthropogenic 
interference with the climate system 
associated with the irreversible loss of the 
Greenland and Antarctic ice sheets7. ❐
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Changing storminess and global capture fisheries
Climate change-driven alterations in storminess pose a significant threat to global capture fisheries. Understanding 
how storms interact with fishery social-ecological systems can inform adaptive action and help to reduce the 
vulnerability of those dependent on fisheries for life and livelihood.
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Fisheries are an important source of 
nutrition, livelihoods and cultural 
identity on a global scale. Fish provide 

3.1 billion people with close to 20% of their 
animal protein1, and are relied on for vital 
micronutrients, which are particularly 

critical to the health of children and 
pregnant women2. Capture fisheries and 
aquaculture are estimated to support the 
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livelihoods of 12% of the global population 
and 38 million fishers regularly risk their 
lives in one of the most dangerous jobs on 
Earth1. Despite its dangers, fishing is an 
important source of cultural identity and 
well-being for fishing communities around 
the world3.

In addition to ocean warming and 
acidification, changing storminess is a 
climate stressor that affects marine life and 
habitats (Fig. 1a), with potential negative 
consequences for fish catch and the well-
being of coastal communities. Changing 
storminess also poses a direct risk to 
fisheries: storms disrupt fishing effort and 
pose a physical threat to fishers, their vessels 
and gear, as well as to fishing communities 
and their infrastructure. Although ocean 
warming may alter the potential fish catch 
over the next 50 to 100 years4, changing 
storminess has the potential to cause more 
immediate and catastrophic impacts. The 
twenty-first century has already witnessed 
many tropical, extratropical and thunder 
storms that have claimed thousands of 
fishers’ lives, destroyed fishery-dependent 
livelihoods and assets, and disrupted the 
production of commercial inland and 
marine capture fisheries (Fig. 1b).

The number of storminess reanalysis  
and projection studies is growing, as  
is their geographic scope (Fig. 2).  
However, uncertainty in past and future 
storminess from global and regional  
climate models remains high as a result  
of widespread variation in analytical 
methods, poor historic observational 
data5 and the challenge of distinguishing 
externally forced climate changes from 
natural internal climate variability6. The 
attribution of individual extreme weather 
events to anthropogenic climate forcing is  
challenging — particularly for storms7. 
Thus, extreme weather event attribution is 
an expanding area of research and examples 
for storm events are beginning to emerge8.

Despite the difficulties in modelling the 
location, frequency and intensity of storms, 
there is sufficient certainty for the IPCC 
to conclude for the North Atlantic basin 
(where fisheries productivity is high and 
historic storm data is particularly rich) that 
the frequency of the most intense tropical 
storms has increased since the 1970s5. A 
recent review of future winter storminess 
studies in Europe, ranging over periods 
spanning 2020–2190, predicts increases in 
storm frequency and intensity in Western 
and Central Europe, and decreasing 
storminess over the North Atlantic north of 
60° N and in Southern Europe9. Evidence 
of changing storminess from studies 
outside the North Atlantic includes a 
northward shift in Western North Pacific 

tropical cyclone exposure towards the East 
China Sea10 and increased post-Monsoon 
storminess in the Arabian Sea8. However, 
substantial uncertainties in storminess 
projections remain, and represent a real 
barrier to effective assessment of global 
fishery vulnerability.

The uncertainties surrounding the 
changing nature of storm hazards are 
paralleled by a lack of knowledge about how 
storm events directly interact with social 
and economic variables to influence the 
behaviour of fishers. In addition, the impacts 
of storms on marine ecosystems, and the 
linkages by which these cause indirect social 
and economic perturbations to fisheries, 
are little understood. An interdisciplinary 
research effort is now required to clarify the 
climatic, social and ecological dimensions 
of changing storminess to support the 
assessment of fishery vulnerability and 
inform adaptive action.

Plotting the course ahead
We advocate a roadmap that draws on 
climate science, environmental social 
science, psychology, economics and 
ecology, and is based on four interlinked 
research areas (Fig. 3): (1) developing 
climate modelling to better understand 
changing storm hazards; (2) understanding 
fishers’ behavioural response to storms; (3) 
examining the effects of storms on coastal 
marine ecosystems and socio-economic 
linkages; and (4) assessing fisheries 
vulnerability and adaptation strategies for 
changing storminess.

Modelling changing storminess
Identifying the risk to fisheries of changes 
in storminess requires climate models that 
provide a reliable spatial and temporal 
view of the past and future frequency 
and intensity of tropical, extratropical 
and thunder storms. To achieve this, 
improvements are required in the explicit 
representation of the sub-grid-scale physical 
processes by which the most intense storms 
form and develop, such as convection. 
Advances in ocean–atmosphere coupled 
models are also necessary to capture the 
boundary layer processes that drive storms. 
Progress is being made in these areas, for 
instance in developing climate models 
that better represent the coupled ocean–
atmosphere processes in tropical cyclones11.

Improving the characterization of storms 
in climate models demands finer spatial 
resolution and a shortening of time steps, 
which will intensify the trade-off between 
the resolution and timescale of simulations 
that results from limited computing 
resources. Supported by greater computing 
power, enhanced representation of storms 

in climate models will improve both 
reanalysis and predictions of storminess 
and strengthen our understanding of the 
influence of climate variability at seasonal to 
decadal timeframes on storm events.

Fisher behavioural responses
The effect of storms on fisheries is in 
part a function of fishers’ behavioural 
response to meteorological conditions. 
The heterogeneity of fisher decisions 
regarding whether to participate, and where 
to fish, in adverse weather conditions for 
different fishery types, vessel characteristics 
and social and cultural contexts around 
the world should be explored. Fishers’ 
decisions on where and when to fish are 
known to be affected by a complex array 
of socio-economic factors12. However, the 
way in which fishers make weather-related 
decisions is poorly understood. We do not 
know how projected weather information is 
used or if it is accessible to fishers. It will be 
important to understand fisher decisions to 
go to sea, or stay at sea, during storms, how 
weather conditions affect the distribution of 
fishing activity, the performance of different 
gears in adverse weather and the interaction 
of perceptions of physical and economic risk 
in decision-making.

Explaining the behavioural response of 
fishers to storms will require the involvement 
of psychologists, sociologists, anthropologists 
and economists employing research methods 
across the epistemological spectrum. 
Qualitative approaches can unravel the 
complexity of factors, motivations and 
processes underpinning decision-making, 
whereas experimental methods, such as 
economic choice experiments, offer the 
potential to reveal how decisions are made 
where observational data are not readily 
available, as is the case in many tropical 
fisheries. The increasing availability of 
on-board satellite vessel tracking technology 
and wind and wave hindcast modelled 
data is creating the potential to model the 
behavioural response of fishers to weather 
conditions at unprecedented temporal  
and spatial resolutions. In addition, the 
emerging application of agent-based 
modelling approaches to fisheries could 
reveal the weather-related behaviour of fleets 
based on the decisions and interactions of 
individual fishers.

Ecosystems and socio-economic linkages
Storms have the capacity to cause extensive 
disturbances to marine ecosystems and 
habitats that support productive fisheries. 
Several areas require investigation to 
improve our knowledge: little is known 
about the manner in which fish life-cycle 
events (including spawning migrations, 
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larval growth and dispersal during the 
planktonic larval phase) and the use 
of shallow nursery ground habitats are 
influenced by storm disturbance. There 
is some evidence that fish may evacuate 
storm areas or be redistributed by storm 
waves and currents (Fig. 1a), but this 
requires further exploration. Storm-
induced fish mortality events, such as the 
death of 400,000 fish in the Nyanza Gulf 
of Lake Victoria following post-storm 
deoxygenation and turbidity in 198413, 

are poorly understood. Finally, the way 
that changing storminess interacts with 
other marine impacts of climate change 
(such as ocean warming, acidification 
and deoxygenation) to affect marine 
ecosystems remains unexplored.

Interdisciplinary efforts are required 
to uncover how direct marine ecosystem 
impacts are linked with indirect social and 
economic impacts on fisheries. Although 
there are examples of storm damage to 
key habitats, we know little of how this 

consequently influences the abundance or 
catchability of targeted fish species. We lack 
knowledge of how storm-induced changes 
in fish distribution affect fishery catches, but 
fishers’ logbooks may offer a rich source of 
data to address this gap.

Vulnerability and adaptation strategies
Assessing the vulnerability of fisheries 
to changing storminess is essential for 
prioritizing limited adaptation resources 
and informing adaptation strategies. The 
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Fig. 1 | Ecological, social and economic impacts of storms on fisheries. a, Examples of storm-induced marine ecosystem disturbances. For further detail see 
Supplementary Information Section 1a. b, Examples of social and economic impact case studies from the twenty-first century. Case studies were selected 
based on the scale of the impacts, global geographic spread and availability of data. For further detail see Supplementary Information Section 1b.

657Nature Climate Change | VOL 8 | AUGUST 2018 | 648–659 | www.nature.com/natureclimatechange

http://www.nature.com/natureclimatechange


658 Nature Climate Change | VOL 8 | AUGUST 2018 | 648–659 | www.nature.com/natureclimatechange

comment

exposure of fisheries will vary spatially with 
projected changes in storm risk, target fish 
species, the resilience of infrastructure and 

the extent of natural and man-made storm 
defences. It is probable that the impact of 
changing storminess on fisheries will be 

socially differentiated, with severe impacts 
more likely to affect small-scale fisheries. 
The vulnerability of fisheries to changes in 
storminess is unclear at present. Fishery 
vulnerability assessments developed over 
the past decade have acknowledged, but 
not reflected, changing storminess14, largely 
because of the gaps in knowledge outlined 
here. These assessments can be enhanced 
by incorporating appropriate measures of 
exposure, sensitivity and adaptive capacity 
to storms.

Fishery adaptation measures will 
require evaluation in local contexts. 
Possibilities include technological advances, 
improvements in the accuracy and 
communication of weather forecasts, and 
innovative financial solutions. In Kerala, 
India, a weather forecast service called 
Radio Monsoon (https://twitter.com/
radiomonsoon) provides daily information 
over loudspeaker in harbours and through 
social media. Insurance schemes triggered 
by environmental indices are growing in 
popularity in terrestrial agriculture15 and 
could increase the resilience of fisheries to 
increased storminess. Modifications of this 
concept would have to reflect the nature of 
daily harvesting activity and the dynamic 
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Fig. 2 | The spatially heterogeneous nature of changing global storminess. The selection of reanalysis 
and projection studies is not systematic, but is designed to reflect a range of studies carried out for 
the Atlantic, Pacific and Indian oceans, which account for the majority of the global fish catch. Darker 
colours indicate the most intense storms; for further detail see Supplementary Information Section 2.
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nature of marine resources. Some fishers 
may also have opportunities to adapt to take 
advantage of reduced storminess, which may 
exacerbate existing challenges to sustainable 
use of natural resources.

Conclusions
Greater attention to the research priorities 
outlined here could help inform adaptation 
and protect the well-being of billions of 
people worldwide. Although scientists 
are actively working in some of these 
areas, research gaps remain, and existing 
knowledge is yet to be applied to this social-
ecological climate issue. The potentially 
catastrophic impacts of changing storminess 
for global fisheries over relatively short 
timescales mean that enhanced integration 
across disciplines is urgently needed to 
address this challenge. ❐

Nigel C. Sainsbury1*, Martin J. Genner2, 
Geoffrey R. Saville3, John K. Pinnegar4,  
Clare K. O’Neill5, Stephen D. Simpson6 and 
Rachel A. Turner1

1Environment and Sustainability Institute, University 
of Exeter, Penryn, UK. 2School of Biological Sciences, 
University of Bristol, Bristol, UK. 3Willis Research 
Network, Willis Towers Watson, London, UK. 
4Centre for Environment, Fisheries and Aquaculture 
Science, Lowestoft, UK. 5Met Office, Exeter, UK. 
6Biosciences, College of Life and Environmental 
Sciences, University of Exeter, Exeter, UK.  
*e-mail: ns429@exeter.ac.uk

Published online: 25 June 2018 
https://doi.org/10.1038/s41558-018-0206-x

References
	1.	 The State of World Fisheries and Aquaculture (FAO, 2016).
	2.	 Golden, C. D. et al. Nature 534, 317–320 (2016).
	3.	 Coulthard, S., Johnson, D. & McGregor, J. A. Glob. Environ. 

Change 21, 453–463 (2011).
	4.	 Cheung, W. W. L. et al. Glob. Change Biol. 16, 24–35 (2010).
	5.	 Hartmann, D. L. et al. in Climate Change 2013: The Physical 

Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge 
Univ. Press, 2013).

	6.	 Bindoff, N. L. et al. in Climate Change 2013: The Physical Science 
Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. 
Press, 2013).

	7.	 Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Nat. Clim. 
Change 5, 725–730 (2015).

	8.	 Murakami, H., Vecchi, G. A. & Underwood, S. Nat. Clim. Change 
7, 885–889 (2017).

	9.	 Mölter, T., Schindler, D., Albrecht, A. T. & Kohnle, U. Atmosphere 
7, 60 (2016).

	10.	Kossin, J. P., Emanuel, K. A. & Camargo, S. J. J. Clim. 29,  
5725–5739 (2016).

	11.	Scoccimarro, E. et al. J. Clim. 30, 145–162 (2017).
	12.	van Putten, I. E. et al. Fish Fish 13, 216–235 (2012).
	13.	Ochumba, P. B. Hydrobiologia 208, 93–99 (1990).
	14.	Allison, E. H. et al. Fish Fish 10, 173–196 (2009).
	15.	Surminski, S., Bouwer, L. M. & Linnerooth-Bayer, J.  

Nat. Clim. Change 6, 333–334 (2016).

Acknowledgements
N.C.S. acknowledges the financial support of the UK 
Natural Environment Research Council (NERC; GW4+​ 
studentship NE/L002434/1), Centre for Environment, 
Fisheries and Aquaculture Science and Willis Research 
Network. We thank E. M. Wood, who provided design 
services for the figures.

Competing interests
J.K.P. is a co-chair of the ‘ICES-PICES Strategic Initiative 
on Climate Change Impacts on Marine Ecosystems’ and 
will be a Lead Author for the ‘Small Islands’ chapter in the 
IPCC’s Sixth Assessment Report (WG III).

Additional information
Supplementary information is available for this paper at 
https://doi.org/10.1038/s41558-018-0206-x.

659Nature Climate Change | VOL 8 | AUGUST 2018 | 648–659 | www.nature.com/natureclimatechange

mailto:ns429@exeter.ac.uk
https://doi.org/10.1038/s41558-018-0206-x
https://doi.org/10.1038/s41558-018-0206-x
http://www.nature.com/natureclimatechange



