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Abstract 

 

The Earth’s climate sensitivity to radiative forcing remains a key source of uncertainty in 

future warming projections. There is a growing realisation in recent literature that research 

must go beyond an equilibrium and CO2-only viewpoint, towards considering how climate 

sensitivity will evolve over time in response to anthropogenic and natural radiative forcing 

from multiple sources. Here, the transient behaviour of climate sensitivity is explored using a 

modified energy balance model, in which multiple climate feedbacks evolve independently 

over time to multiple sources of radiative forcing, combined with constraints from 

observations and from the Climate Model Intercomparison Project phase 5 (CMIP5). First, a 

large initial ensemble of 107 simulations is generated, with a distribution of climate feedback 

strengths from sub-annual to 102 year timescales constrained by the CMIP5 ensemble; 

including the Planck feedback, the combined water-vapour lapse-rate feedback, snow and 

sea-ice albedo feedback, fast cloud feedbacks, and the cloud response to SST-adjustment 

feedback. These 107 simulations are then tested against observational metrics representing 

decadal trends in warming, heat and carbon uptake, leaving only 4.6×103 history-matched 

simulations consistent with both the CMIP5 ensemble and historical observations. The results 

reveal an annual-timescale climate sensitivity of 2.1 °C (ranging from 1.6 to 2.8 °C at 95% 

uncertainty), rising to 2.9 °C (from 1.9 to 4.6 °C) on century timescales. These findings 

provide a link between lower estimates of climate sensitivity, based on the current transient 
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state of the climate system, and higher estimates based on long-term behaviour of complex 

models and palaeoclimate evidence. 

1. Introduction 

There is currently significant uncertainty in the sensitivity of Earth’s climate to radiative 

forcing, with the IPCC Assessment Report 5 (IPCC, 2013) estimating that the Equilibrium 

Climate Sensitivity (ECS, measuring the surface temperature response in °C to a sustained 

doubling of CO2) ranges from 1.5 °C to 4.5 °C (Fig. 1a, black). This 1.5 to 4.5 °C range from 

IPCC (2013) incorporates many separate estimates of the ECS that have been made from 

multiple lines of evidence (e.g. see Knutti et al., 2017 see Figure 2 therein). Now consider a 

small selection of estimates chosen to reflect evidence from current energy budgets, complex 

Earth system models, and modern and geological observations. Estimates from energy 

balance considerations of the current transient climate system (Otto et al., 2013; Lewis and 

Curry et al., 2014) imply a best estimate ECS towards the lower end of the IPCC range (Fig. 

1a, dark gray) of circa 1.6 to 2 °C. In contrast, analysis of the century timescale ECS from 

observation-constrained climate models (Cox et al., 2018), or from a combination of 

observational and geological constraints (Goodwin et al., 2018), suggests best estimate values 

from the middle of the IPCC range (Fig. 1a, light grey) of circa 3 °C. Together with this 

uncertainty in the value of the ECS is a growing acknowledgement that the Earth’s climate 

sensitivity is likely to evolve through time, both due to time-evolving processes included 

within climate models (Armour et al., 2013; Knutti and Rugenstein, 2017; Williams et al., 

2008; Andrews et al., 2015; Caldwell et al., 2016; Figure 2a), and over longer geological 

timescales (Zeebe, 2013; Rohling et al, 2018). 

 

In a simple 1-dimensional energy balance model, the global mean surface warming at time t, 

T(t) in °C, is empirically linked to the difference between total radiative forcing, R
total

(t)  in 

Wm-2, and the Earth’s net energy imbalance, N(t) in Wm-2, via an effective climate feedback 

parameter,  in Wm-2K-1, via 

 

lDT (t) = R
total

(t)-N(t),      (1) 

 

where, the total radiative forcing is a sum from i independent sources, R
total

(t) = R
i
(t)

i

å , and 

the effective climate feedback parameter is defined such that T(t) represents the total 
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aggregated outgoing radiative response in Wm-2 to the surface warming accounting for all 

feedback processes. Note that the word ‘effective’ is used here to suggest that the value of the 

climate feedback may represent an aggregated response, composed of different climate 

feedback values relating to different sources of radiative forcing, that may be changing 

through time. 

 

However, there are a number of important deficiencies in this approach, which have been 

illustrated by applying this equation to the output of complex climate models. Firstly, the 

effective climate feedback parameter, , is not expected to remain constant in time, but 

instead display transient behaviour as different climate feedbacks respond to the imposed 

forcing over different timescales (e.g. Andrews and Webb, 2018; Caldwell et al. 2016; Knutti 

& Rugenstein, 2017; Zeebe, 2013; PALAEOSENS, 2012; Rohling et al., 2018; Senior and 

Mitchell, 2000; Gregory et al., 2004; Williams et al., 2008; Armour et al., 2013; Paynter et 

al., 2018; see Figure 2a). Secondly,  may be different for different sources of radiative 

forcing, potentially arising due to the different spatial patterns of radiative forcing from 

different agents (Hansen et al. 2005; Marvel et al., 2016; Gregory and Andrews, 2016). 

Thirdly, in some models the ocean heat uptake (the dominant component of N), can have a 

larger effect on warming during transient climate change than an equivalent magnitude of 

radiative forcing, R, (e.g. Winton et al., 2010; Geoffroy et al., 2013; Frölicher et al., 2014).  

 

Potentially, the discrepancy between climate sensitivity estimates derived from the Earth’s 

current transient state energy balance (Otto et al, 2013; Lewis and Curry, 2014) and climate 

sensitivity estimates for century timescales (Cox et al., 2018; Goodwin et al., 2018) may be 

linked to the deficiencies in equation (1) (Fig. 1, compare dark and light gray). For example, 

 may change over time between the current transient state and century timescales, the spatial 

pattern of radiative forcing and relative contributions from each agent today may not apply in 

the future, and the large current value of N in the current transient state may reduce as the 

system approaches a new steady state.  

 

Without explicitly putting a time-dependence on the climate feedback, the simple 1-

dimensional energy balance model (1) has been extended (e.g. Hansen et al., 2005; Winton et 

al, 2010; Geoffroy et al., 2013; Frölicher et al., 2014; Marvel et al., 2016; Goodwin et al., 
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2015) by considering non-dimensional efficacy weighting on both the contributions to 

radiative forcing, i, and the Earth’s energy imbalance, N, via,  

 

lDT (t) = R
total

weighted (t)-e
N
N (t)  ,      (2) 

 

where the total efficacy weighted radiative forcing at time t is the sum of contributions from i 

independently time-varying sources with each contribution weighted by a non-dimensional 

efficacy term i, R
total

weighted (t) = e
i
R
i
(t)

i

å  (Marvel et al., 2015), and NN(t) in Wm-2 represents 

the total efficacy-weighted energy imbalance of the Earth system.  

 

Goodwin et al. (2018) utilised this extended 1-dimensional energy balance model (2), with 

efficacy-weighting but with climate feedback assumed constant in time, to drive an efficient 

Earth system model, generating history-matched projections of future warming and 

constraining century-timescale climate sensitivity (Fig. 1a, light gray). Instead of applying 

efficacy weightings (2), this study explores an alternative approach: Here, the energy balance 

equation (1) is extended to explicitly include time-varying climate feedbacks from multiple 

processes, that each respond independently to multiple radiative forcing agents. This 

extended energy balance equation is then used to constrain the climate sensitivity over 

multiple timescales, and used to show that this may explain the discrepancy between climate 

sensitivity estimates from the current transient energy balance and century timescale 

approaches (Fig. 1). 

 

Section 2 derives the extended 1-dimensional energy balance model with j climate feedbacks 

independently responding over time to i radiative forcing agents. Section 3 then describes 

how the Warming Acidification and Sea level Projector (WASP) model (Goodwin, 2016; 

Goodwin et al., 2018) is extended to incorporate this extended energy balance equation and 

used to perform a large ensemble of climate simulations, where the initial distributions for the 

climate feedback strengths for the j processes are taken from the range of feedback strengths 

in the CMIP5 model ensemble analysed by Caldwell et al. (2016) and Andrews et al. (2015). 

A history matching approach (Williamson et al., 2015) is then applied, after Goodwin et al. 

(2018), to extract combinations of feedback strengths that are consistent with observational 

constraints (Table 2) for surface warming (Morice et al., 2012; GISSTEMP, 2018; Hansen et 
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al, 2010; Smith et al., 2008; Vose et al., 2012), ocean heat uptake (Levitus et al., 2012; Giese 

et al., 2011; Balmeseda et al., 2013; Good et al., 2013; Smith et al., 2015; Cheng et al., 2017; 

Kennedy et al., 2011; Huang et al., 2015) and carbon fluxes (IPCC, 2013 for 90% confidence 

bounds, based on original data now summarized in Le Quéré et al., 2018). Section 4 presents 

the history-matched results, evaluating the timescale evolutions of climate feedback, climate 

sensitivity and future warming that are consistent with observational and CMIP5 constraints. 

Section 5 discusses the wider implications of this study. 

 

2. Time-evolving climate feedbacks 

Consider a climate system where there are i independently time-varying sources of radiative 

forcing, Ri(t) in Wm-2, such that the total radiative forcing is written, 

 

R
total

(t) = R
i
(t)

i

å .        (3)  

 

 

The i different sources of radiative forcing include radiative forcing from atmospheric CO2, 

other well-mixed greenhouse gases such as methane and nitrous oxide, solar forcing, and 

spatially localised forcing such as tropospheric aerosols and volcanic stratospheric aerosols 

(Figure 3).  

 

In response to each of the i source of radiative forcing there are j independently time-

evolving climate feedback processes, i,j(t) in Wm-2 K-1, such that the total climate feedback 

due to radiative forcing agent i is written 

 

l
i
(t) = l

Planck
+ l

i , j
(t)

j

å ,       (4)  

 

where Planck is the Planck sensitivity, equal to around 3.15 Wm-2 K-1 (Caldwell et al., 2016) 

and i,j(t) is the climate feedback from process j in response to forcing agent i. The j climate 

feedback processes include the combined water vapour – lapse rate feedback, fast cloud 

feedbacks, snow and sea-ice albedo feedbacks, and the slow cloud feedback occurring as the 

spatial pattern of SSTs change in response to warming over many decades (Figure 2a). These 

feedbacks from the j processes operate over a range of different timescales. For example, it 
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takes order 10 days for water vapour to respond to surface warming, but due to the presence 

of multi-year sea ice it may take years for the snow + sea-ice albedo to respond to an imposed 

forcing, while it may take many decades for SST warming patterns to adjust towards an 

equilibrium state, thereby altering cloud feedback (Andrews et al., 2015).  

 

The aim is to derive a modified energy balance equation that solves for the global mean 

surface temperature anomaly over time, T(t), explicitly accounting for the independence of 

the j climate feedback responses to each of the i sources of radiative forcing. First, the general 

1-D energy balance equation, (1), is re-arranged to solve for warming in terms of the ratio of 

the total radiative forcing Rtotal(t) (Figure 3b) to the overall effective climate feedback (t),  

 

DT (t) = 1-
N (t)

R
total

(t)

æ

è
çç

ö

ø
÷÷
R
total

(t)

l(t)

æ

è
ç

ö

ø
÷ .      (5) 

 

 

Next, we notice from (5) that the total radiative forcing divided by the overall effective 

climate feedback parameter at time t, Rtotal(t)/(t), represents the overall warming that would 

be achieved from all sources of radiative forcing if the global climate system were in energy 

balance, N(t) = 0, via 

 

DT
N (t )=0

(t) =
R
total

(t)

l(t)

æ

è
ç

ö

ø
÷.       (6) 

 

We now state, by definition, that the radiative forcing from the ith agent divided by the 

climate feedback parameter for the ith agent at time t, Ri(t)/i(t), similarly represents the 

warming that would be achieved from radiative forcing by the ith agent if the global energy 

system were brought into balance, N(t) = 0, via 

 

DT
i N (t )=0

(t) =
R
i
(t)

l
i
(t)

æ

è
çç

ö

ø
÷÷.        (7) 

 

Now, it is assumed that the radiative forcing from all i sources is separable. This is reasonable 

if either the i sources of radiative forcing affect the absorption of different radiation 
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wavelengths, or the absorption of radiation at a given wavelength by one agent is independent 

of the absorption at the same wavelength by another. Note that while the radiative forcing 

from CH4 and N2O do have a dependence upon one another (Myhre et al, 2013), for the 

WASP experiments here these terms are combined into a single source of radiative forcing 

representing all greenhouse gases other than CO2 (Figure 3, blue), which can be considered 

separable from the other agents.  

 

Under the separable radiative forcing assumption for the i agents, the total warming from all 

sources of radiative forcing if the system is brought into energy balance must be equal to the 

sum of warming contributions from all i sources of radiative forcing at energy balance, 

DT
i N (t )=0

(t)
i

å = DT
N (t )=0

(t). This allows us to write from (6) and (7), 

 

 

R
i
(t)

l
i
(t)

é

ë
ê

ù

û
ú

i

å =
R
total

(t)

l(t)
.        (8) 

 

Substituting (8) into (5) gives an expression for global mean surface warming at time t as a 

function of the separate radiative forcing and climate feedback parameters for the i forcing 

agents,  

 

DT (t) = 1-
N (t)

R
total

(t)

æ

è
çç

ö

ø
÷÷

R
i
(t)

l
i
(t)

é

ë
ê

ù

û
ú

i

å ,      (9) 

 

The total modified energy balance equation for global mean surface warming from j climate 

feedback processes, which each evolve independently in response to i radiative forcing 

agents, is found by substituting (4) into (9) to reveal, 

 

DT (t) = 1-
N (t)

R
total

(t)

æ

è
çç

ö

ø
÷÷

R
i
(t)

l
Planck

+ l
i , j

(t)
j

å

é

ë

ê
ê
ê

ù

û

ú
ú
úi

å .     (10) 
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Note that the total warming from the i different forcing agents when N≠0 is not equal to the 

sum of warming if each of the i agents acted alone in this energy balance equation, (10). This 

is because the ratio N(t)/Rtotal(t) in equation (10) evolves according to the combined history of 

radiative forcing from all forcing agents, and would be different for the individual forcing 

agents acting alone (Figure 3).  

 

The next section applies this energy balance equation (10), with independently time-varying 

forcing and feedbacks, to drive the efficient WASP Earth system model (Goodwin, 2016; 

Goodwin et al., 2018).  

 

3. Numerical Earth system model with modified energy balance equation 

WASP (Goodwin, 2016; Goodwin et al., 2018) is an efficient Earth system model that solves 

for global mean surface warming for carbon emissions scenarios using an energy balance 

equation with coupled carbon cycle terms (Goodwin et al., 2015). The WASP configuration 

of Goodwin et al. (2018) assumed a constant value for the effective climate feedback over 

time, , and applied non-dimensional efficacy weightings to heat uptake, N, and to the 

radiative forcing from aerosols, Raerosol, equation (2). Here, we modify the WASP model by 

solving for global mean surface warming using equation (10), allowing climate feedback to 

vary over time independently for each forcing agent, and removing the non-dimensional 

efficacy weightings for heat imbalance and the different sources of radiative forcing. 

 

3.1 Time dependent climate feedbacks in WASP 

This section, and Appendix A, present the alterations made to the WASP model configuration 

of Goodwin et al. (2018) to enable warming to be calculated via equation (10). The full code 

for this version of the WASP model is available in Supplementary Information. 

 

Consider a step function in the radiative forcing from agent i at time t=t0, Ri(t≥t0)≠0, where 

Ri(t<t0)=0. Initially, at time t=t0 the climate feedback to agent i is given by the Planck 

feedback, i(t=t0) = Planck. Here, we assume that the climate feedback contributions from the 

j climate processes then evolve towards their equilibrium values, i,j
equil, with e-folding 

timescales for each process, j. Thus, the overall climate feedback parameter, following a 

step-function for the ith source of radiative forcing, from all j processes at time t0+t, 

i(t0+t), becomes, 
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l
i
(t

0
+ Dt) = l

i , j

equil 1-exp
-Dt

t
j

æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
÷

j

å .     (11) 

 

In the general case radiative forcing from each agent does not increase via a step function, but 

instead by pathways that can increase or decrease over time (Figure 3a). This is achieved in 

WASP by using two time-stepping equations (see Appendix): one equation adjusting the 

climate feedbacks to the existing radiative forcing to the ith source at the previous time-step, 

and a second equation adjusting the climate feedback to the additional radiative forcing from 

the ith source since the previous time-step, to account for the feedback to any additional 

radiative forcing being the Planck feedback initially. Full details are given in the Appendix.  

 

Other alterations to the WASP model, from the configuration of Goodwin et al. (2018), 

include: 

(1) the time-step is reduced from 1/12th of a year to 1/48th of a year (Appendix A), and  

(2) the equations calculating the heat imbalance, N (see Goodwin, 2016; equations 3 and 4 

therein), are altered to reflect the multiple time-varying climate feedback terms in (10) 

(Appendix A).  

 

Separate radiative forcing terms from CO2, other Well Mixed Greenhouse Gasses (WMGHG) 

and tropospheric aerosols are retained from the configuration of Goodwin et al. (2018) 

(Figure 3a), after Meinshausen et al. (2011), while solar radiative forcing (Meinshausen et al. 

2011) and volcanic radiative forcing (from NASA GISS record, 

https://data.giss.nasa.gov/modelforce/strataer/; see Bouassa et al., 2012) are added (Figure 

3a). The volcanic radiative forcing is added using the NASA record of Aerosol Optical Depth 

(AOD) since 1850 and applying a multiplier of -19±0.5 Wm-2 per unit AOD (Gregory et al., 

2016), where the uncertainty represents the standard deviation of the multiplier between the 

different models in the ensemble. Where the time-resolution of radiative forcing (or 

atmospheric composition) is less than 1/48th of a year, the values are linearly interpolated 

between time-steps. 

 

3.2 Generating an ensemble constrained by observations and CMIP5 

This section details the construction of the very large initial Monte Carlo model ensemble, 

and the subsequent history matching used to extract the smaller final ensemble of constrained 

https://data.giss.nasa.gov/modelforce/strataer/
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model simulations. First, an initial ensemble of 107 simulations is generated with the strength 

of climate feedback from different processes taken from analysis of CMIP5 models by 

Caldwell et al. (2016) and Andrews et al. (2015) (Table 1; Figure 2a). All other model 

parameters are varied with input distributions after the configuration of Goodwin et al. (2018 

– see Supplementary Table 2 therein).  

 

The random-normal input distributions of climate feedback at equilibrium from Planck 

feedback, Planck, combined Water Vapour Lapse Rate (WVLR), WVLR, fast cloud adjustment, 

FastCloud and albedo adjustment, albedo, (Table 1) are taken from analysis of these feedbacks 

in CMIP5 models by Caldwell et al (2016). The random-normal input distribution of climate 

feedback at equilibrium from the SST warming pattern adjustment-cloud feedback, SlowCloud, 

is taken from the change in cloud feedback over time in CMIP5 models analysed by Andrews 

et al. (2015). These feedbacks are imposed with different input distributions for the 

timescales, j (Table 1), with Planck assumed to act instantaneously in all model simulations 

(Table 1).  

 

The timescales for water-vapour lapse rate, WVLR, and fast cloud feedback, FastCloud, are 

varied with random-normal input distributions set to the residence time of water vapour in the 

atmosphere of 8.8±0.4 days (Ent and Tuinenburg, 2017). The global surface albedo feedback 

is found by Colman (2013) to have components acting from seasonal up to decadal 

timescales, presumably reflecting fast snow responses up to slower multi-year sea-ice 

responses. To simulate this range, the timescale for the snow and sea-ice albedo feedback, 

albedo, is varied with a random distribution between 0.5 and 5 years (Table 1). The timescale 

for the slow cloud-SST adjustment feedback, SlowCloud, is varied with a random distribution 

from 20 to 45 years. The lower limit of 20 years is set by the initial time window Andrews et 

al. (2015) used to assess the response of CMIP5 models before the SlowCloud feedback 

applied. The upper limit of 45 years is (1) set to ensure that there are enough e-folding 

timescales for the SlowCloud feedback to take effect in the CMIP5 model simulations analysed 

by Andrews et al. (2015), and (2) set equal to a timescale for the thermocline identified by 

Fine et al. (2017), since spatial adjustment of SST warming patterns is likely linked to 

adjustments within the thermocline.  
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The combination of input distributions for feedback strengths, i,j, and timescales, j, (Table 

1) results in a wide range of climate feedback over time in the initial 107-simulation ensemble 

(Figure 2b, gray).  

 

The same values of climate feedback at equilibrium from each process are applied here to 

each source of radiative forcing (Table 1), except that the snow and sea-ice albedo feedback 

is reduced to 20% for volcanic stratospheric aerosol forcing compared to the other sources of 

radiative forcing (Table 1). This reflects the finding by Gregory et al. (2016) that in a CMIP5 

model volcanic aerosols cause around 1.4 times less warming or cooling than an equivalent 

radiative forcing from CO2. Here, this is imposed in the model by reducing the snow and sea 

ice albedo feedback term for volcanic aerosols, because the majority of volcanic forcing 

occurs at low latitudes and the majority of snow and sea-ice albedo forcing occurs at high 

latitudes. Note that in general the method applied here allows the strength of each climate 

feedback at equilibrium, i,j
equil, to be independently assigned for each source of radiative 

forcing, (4) and (10), to reflect the different sensitivity of warming to each source of radiative 

forcing (e.g. Hansen et al., 2005; Marvel et al., 2016). However, a full exploration of this 

within the WASP model is reserved for future study. 

 

Following the methodology of Goodwin et al. (2018), each of the 107 initial Monte Carlo 

prior simulations is then integrated to year 2017 and tested against observational metrics of 

surface warming, ocean heat uptake and ocean carbon uptake (Table 2). From the initial 107 

simulations, 4.6×103 simulations agree with the observational constraints (Table 2) and are 

extracted to form a final posterior history matched (Williamson et al., 2015) ensemble 

(Figure 4a).  

 

This final history matched ensemble of 4.6×103 simulations has climate feedback strengths 

consistent with the CMIP5 ensemble for multiple processes (Table 1), but shows simulated 

warming more tightly constrained by historical observations (Table 2) than for the range 13 

CMIP5 models (Figure 4a, compare blue and beige to black; Appendix).  

 

The observational constraints for surface warming compare time-average global temperature 

anomalies spanning ten-years or longer (Table 2). Therefore, the observed temperature 

anomaly response to volcanic forcing from months to a few years (e.g. Figure 4b, black) has 
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not been used to select the final history matched WASP model simulations. The simulated 

response of the history-matched WASP model ensemble to a recent volcanic eruption shows 

good agreement to the observed response for the real climate system (Figure 4b, compare 

black to blue), both in terms of the magnitude of cooling and the relative timing from the 

AOD perturbation. Although the ensemble simulated cooling is slightly larger than the 

observed cooling (Figure 4b), it should be noted that real system includes both the cooling 

effect of the volcanic eruption and the warming effect of the 1991/1992 El Nino event 

(Lehner et al., 2016). Accounting for this El Nino event may further improve the model-

observation agreement. It should also be noted that the simulations record significantly 

greater cooling following the Krakatoa eruption in the late 19th century than is observed 

(Figure 4a). This is likely due to complexity in the climate system not included within the 

WASP model, with observations reflecting both the simultaneous actions of both volcanic 

activity and natural variability, and the complex regional patterns of temperature anomaly. 

For example, observations reflect that the 0 to 30°S and 0 to 30°N latitudinal regions both 

saw cooling in the months following the Krakatoa eruption, but the 30 °N to 90 °N region 

saw a warming (Robock and Mau, 1995 - Figure 4 therein). The agreement with observations 

of monthly to sub-decadal timescale cooling from a recent volcanic eruption (Figure 4b), 

being over a different timescale than the observational constraints (Table 2), provides an 

independent test showing that the time-varying climate feedback approach (10) is functioning 

appropriately in the WASP model.  

 

4. Results 

This section presents the results for the constrained distributions of climate feedback and 

climate sensitivity over different response timescales, and future warming projections, from 

the history matched WASP ensemble. 

 

4.1 Constraints on climate feedback and climate sensitivity over time 

The climate feedback to an imposed radiative forcing alters with the response timescale, 

depending on the processes that act over the different timescales (Figure 2a). In the 

experiments carried out here, a wide range of initial climate feedback strengths for different 

processes are used (Figure 2b, gray; Table 1), based on analysis of climate feedback in the 

CMIP5 models (Caldwell et al, 2016; Andrews et al., 2015).  
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Observational constraints are then applied to extract the posterior history matched WASP 

ensemble (Table 2), and the range of climate feedback over different response timescales 

narrows (Figure 2b, compare blue to gray; Table 1). Starting at the Planck feedback on very 

short timescales, the constrained estimate of climate feedback quickly decreases to 1.9±0.3 

Wm-2 K-1 on a response timescale of 0.1 years (Figure 2b, blue), and then slowly decreases 

further to around 1.5±0.3 Wm-2 K-1 and 1.3±0.3 Wm-2 K-1 on response timescales of 10 years 

and 100 years respectively. 

 

The climate sensitivity (in °C) is defined as the radiative forcing for a doubling of CO2 (in 

Wm-2) divided by the climate feedback (in Wm-2 K-1). Here, this definition is used to convert 

the constrained estimate of the climate feedback (Figure 2b, blue) into a constrained estimate 

for the evolution of the climate sensitivity over multiple response timescales (Figure 1; Table 

3). The mean constrained estimate of climate sensitivity increases quickly to around 2 °C 

(ranging from 1.5 to 2.8 °C at 95%) on response timescales of 0.1 to 1 year (Figure 1, Table 

3), before slowly increasing further to 2.9 °C (ranging from 1.9 to 4.6 °C at 95 %) over a 

response timescale of 100 years. 

 

The 1-year response timescale climate sensitivity identified here is in good agreement with 

previous estimates from Earth’s current transient energy balance, in which the anthropogenic 

radiative forcing is increasing annually (Figure 1, compare red to dark gray; Lewis and Curry, 

2014; Otto et al., 2013). The 100-year response timescale climate sensitivity identified here is 

in good agreement with previous estimates for the equilibrium sensitivity, either using an 

emergent constraint on CMIP5 models or from combining palaeo-climate and historical 

observations (Figure 1, compare blue to light gray; Cox et al., 2018; Goodwin et al., 2018).  

 

4.2 Constraints on the future warming response 

The warming projections from the WASP ensemble (Figure 5, blue) are similar to the 

projections from a range of 13 CMIP5 models (Figure 5, beige; Appendix) for both RCP8.5 

and RCP4.5 scenarios (Meinshausen et al., 2011). This broad agreement from differing 

approaches, one using complex models and another using a more efficient model with history 

matching, provides additional confidence in the future projections (Figure 5, blue and beige). 

The WASP projections do show narrower uncertainty range in future warming than the 

CMIP5 models. Possible reasons for this narrowing of future warming in WASP include the 

greater inter-annual and inter-decadal variability inherent in the CMIP5 models, and the 
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narrower ranges in simulated warming and ocean heat uptake imposed for the present day in 

WASP, due to the tighter observational constraints placed for historic warming and ocean 

heat uptake (Table 2; Figure 4). The RCP4.5 scenario does have a reduced chance of 

remaining under 2 °C warming for the 21st century (less than 1% likelihood) in the 

observationally constrained WASP projections, compared to CMIP5 models (Figure 5b, 

compare blue and beige).  This is in agreement with the observationally constrained future 

warming projections of Goodwin et al. (2018) using a version of the WASP model in which 

the climate feedback is assumed constant in time. 

 

5. Discussion 

A modified energy balance equation is presented in which there is no single climate feedback 

applicable to all sources of radiative forcing at time t, (t). Instead, surface warming is 

calculated using separate the climate feedbacks for each of the i sources of radiative forcing 

at time t, i(t), that are independently calculated from a set of j feedback-processes, i,j(t), via 

 

DT (t) = 1-
N (t)

R
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Using the ranges of climate feedbacks for different processes analysed for CMIP5 models as 

a starting point (Table 1; see Caldwell et al. 2016; Andrews et al. 2015), a large ensemble of 

climate simulations driven by (10) are constructed, and then observational constraints are 

applied to extract a final history matched ensemble after Goodwin et al. (2018): (Table 2; 

Figure 4). 

 

The final posterior history matched ensemble constrains the climate feedback over multiple 

timescales (Figure 2b) consistent both with climate feedbacks displayed by the CMIP5 

models (Table 1) and with observational constraints of historic warming, heat uptake and 

carbon uptake (Table 2, Figure 4). 

 

Much previous research has gone into constraining the Equilibrium Climate Sensitivity (ECS, 

in °C), representing the temperature change at equilibrium following a sustained doubling of 

CO2 (e.g. IPCC, 2013; Knutti and Rugenstein, 2017). However, in the viewpoint presented 
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here, equation (10), there is no ECS. Instead, the ECS is replaced by a time-evolving climate 

sensitivity that varies depending on the response timescale (Figure 1; Table 3). The analysis 

presented here constrains this time-evolving climate sensitivity from sub-annual response 

timescales up to 102 year timescales (Figure 2). However there are additional processes that 

will alter the climate feedback and climate sensitivity further on longer timescales (e.g. 

PALAEOSENS, 2012; Rohling et al. 2018; Zeebe, 2013), for example there is an ice-sheet 

albedo feedback potentially lasting tens of thousands of years. Therefore, the constraint on 

climate sensitivity for a 102 year response timescale presented here (Figure 1, Table 3) should 

not be considered a final ‘equilibrium’ climate sensitivity, but part of an on-going evolution 

of climate sensitivity over multiple response timescales (Knutti and Rugenstein, 2017). 

 

Consider the seeming inconsistency between previous best-estimates of climate sensitivity 

(Figure 1), with Earth’s current transient energy balance suggesting a best estimate of around 

1.6 to 2 °C (Lewis and Curry, 2014; Otto et al., 2013) and century timescale analysis 

suggesting best-estimates of around 3 °C (Cox et al., 2018; Goodwin et al., 2018). The 

combined constraints from the CMIP5 ensemble (Table 1) and observations (Table 3) placed 

here on the climate sensitivity over response timescales from 0.1, 1 and 10 years (Table 3; 

Figure 1) are similar to previous estimates of the ECS evaluated from radiative forcing and 

energy budget constraints (Otto et al, 2013; Lewis & Curry 2014). This similarity is 

interpreted here as reflecting the short response timescales that the current energy balance of 

the Earth system has to respond to anthropogenic forcing. Thus, the results for the climate 

sensitivity over shorter response timescales presented here are consistent with these previous 

findings (Otto et al. 2013; Lewis and Curry, 2014). 

 

The constraint placed here on the climate sensitivity on a response timescale of 100 years 

(Table 3; Figure 1) agrees very well with two recent estimates of the ECS considering 

century timescales; one based on the century-timescale response of CMIP5 models with 

similar autocorrelation lag-1 temperature anomaly properties to the observed climate system 

(Cox et al., 2018), and another based on a similar history matched approach as used here, but 

with climate feedback assumed constant over time and an initial prior distribution based on 

paleoclimate evidence rather than the CMIP5 models (Goodwin et al., 2018).  

 

Thus, this study suggests an interpretation whereby these different previous estimates of 

climate sensitivity are not inconsistent, but merely reflect different response timescales of the 
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system (Figure 1). When planning emission pathways to avoid dangerous climate change 

over the entire 21st century, it is appropriate to consider a century response timescale for 

climate sensitivity. For this purpose, a best estimate 100-year response timescale climate 

sensitivity of 2.9 °C, with a 66 % range from 2.3 to 3.6 °C, is found (Table 3; Figure 1). 

 

This study has used prescriptive input distributions for climate feedback terms based on the 

CMIP5 models (Table 1), and then applied observational constraints (Table 2) to refine the 

distributions and constrain the response-timescale evolutions of climate feedback and climate 

sensitivity (Figures 1 and 2). To adapt the method applied here to use less prescriptive input 

distributions, such that the output would be independent of the CMIP5 models and based 

solely on observations, the following issues would need to be considered. Firstly, one would 

only be able to have a single feedback term for each order of magnitude in timescale. For 

example the WVLR and FastCloud feedbacks operate over the same order of magnitude 

timescale and so would need to be combined into a single feedback term. Secondly, one 

would require an observational constraint generated using (shorter timescale) monthly 

temperature anomaly data, where the current constraints on surface temperature use a 

minimum of a ten-year average (Table 2). Such an observational constraint based on monthly 

temperature anomaly data could possibly be achieved by considering the mean simulated-to-

observed difference in the monthly response to a volcanic eruption over a decade (Figure 4b). 

However, these approaches are beyond the scope of this study and are reserved for future 

work. 

 

Constraining the Earth’s climate sensitivity, and understanding its possible response 

timescale evolution, is critical for reducing uncertainty in future warming projections (e.g. 

Knutti and Rugenstein, 2015). The history matching method with the WASP model applied 

in this study not only identifies a probability distribution for climate sensitivity over multiple 

response timescales (Fig. 1), but also then produces future warming projections using this 

time-evolving distribution (Fig. 5).  
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Appendix 

 

Appendix A: Changes to the WASP model to allow time-evolving climate feedbacks 

To allow time-dependent climate feedbacks in the WASP model, the following alterations are 

made from the configuration of Goodwin et al. (2018). First, the time-step in the WASP 

model, t, is reduced from 1/12th of a year in the configuration of Goodwin et al. (2018) to 

1/48th of a year here. 

 

The following equation adjusts the climate feedback to the existing radiative forcing from ith 

sources from time t to time t+t, considering the j processes evolve towards their equilibrium 

feedback values according to their equilibrium timescales, j (Table 1), 
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Any additional radiative forcing at time t+t relative to t will only operate at the Planck 

sensitivity, the other feedback terms from the j processes will be zero in this initial time-step. 

This is expressed by reducing the time-dependent contributions to climate feedback 

according to the absolute ratio of previous to new radiative forcing, 

 

l
i , j

(t +dt) = l
i , j

(t)
R
i
(t)

R
i
(t +dt)

 ,      (A2) 

 

noting that (A2) is only applied when the radiative forcing is growing in magnitude, 

Ri(t +dt) > Ri (t) . Note, numerically the absolute value is needed in (A2) because of 

occasions where Ri changes sign (e.g. solar forcing) – you don’t want to swap the sign of 

lambda for process j, but reduce it to zero. 

 

To calculate the heat imbalance at time t in WASP, N(t) in Wm-2, the radiative forcing is 

modulated by the fractional distance from equilibrium of the anthropogenic heat of the 

surface mixed layer, Hmix(t) in J, using (Goodwin, 2016), 
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N (t) =
H
mix
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where H
mix

equil (t) is the eventual heat uptake at equilibrium for the surface mixed layer in J if 

the radiative forcing at time t is held constant into the future. Here, allow the climate 

feedback for each source of radiative forcing to evolve independently in time, the equation 

calculating H
mix

equil (t) is modified from the previous form (Goodwin, 2016, equation 3 therein) 

by summing Ri/i for each of the i-sources of radiative forcing, 

 

H
mix

equil (t) = r
SST:SAT

V
mix
c
P

R
i
(t)

l
i , j

(t)
i

å ,     (A4) 

 

where rSST:SAT is the ratio of warming of sea surface temperature to surface air-temperatures at 

equilibrium, Vmix is the volume of the surface mixed layer and cP is the specific heat capacity 

of seawater.  

 

Appendix B: Calculating and plotting temperature anomaly. 

For the figures displayed the annual mean temperature anomalies are calculated as follows: 

the GISTEMP record is shown relative to the 1880 to 1900 average, the HadCRUT4 and 

WASP simulations are shown relative to the 1850 to 1900 average and the CMIP5 

simulations shown relative to the 1861 to 1900 average. 

 

The simulated warming ranges of 13 CMIP5 simulations plotted in Figures 4 and 5 include 

the CanESM2 (Arora et al., 2011), CESM1-BGC  (Moore et al., 2013), GFDL-ESM2G 

(Dunne et al., 2013), GFDL-ESM2M (Dunne et al., 2013), HadGEM2-CC (Martin et al., 

2011), HadGEM2-ES (Jones et al., 2011), IPSL-CM5A-LR (Dufresne et al., 2013), IPSL-

CM5A-MR (Dufresne et al., 2013), IPSL-CM5B-LR (Dufresne et al., 2013), MIROC-ESM-

CHEM (Watanabe et al., 2011), MIROC-ESM (Watanabe et al., 2011), MPI-ESM-LR Ref. 

50 (Giorgetta et al., 2013) and NorESM1-ME (Tjiputra et al., 2013) models. The shaded 

regions in Figures 4 and 5 represent the range of annual mean surface warming values from 

the 13 CMIP5 models, using a single realization of each CMIP5 model. The warming is 

calculated relative to the 1861-1900 average within each simulation.   
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Table 1: Time-evolving climate feedbacks in the WASP model. All input distributions are 

identical for the different sources of radiative forcing, expect that for volcanic radiative 

forcing the snow + sea-ice albedo feedback is reduced to 20% of the value for other sources. 

a Input distribution taken from the CMIP5 models as analyzed by Caldwell et al. (2016). 

b Input distribution taken from the CMIP5 models as analyzed by Andrews et al. (2015). 

 

Feedback 

process 

Equilibrium 

feedback input 

distribution 

e-folding 

adjustment 

timescale input 

distribution 

Posterior climate 

feedback (mean and 

standard deviation) 

Planck 

Feedbacka, 

  

Random-normal: 

= 3.15 Wm-2K-1 

= 0.04 Wm-2K-1

 Instantaneous = 3.15 Wm-2K-1 

= 0.04 Wm-2K-1 

Combined water 

vapour-lapse rate 

feedbacka, WVLR 

Random-normal: 

= -1.15 Wm-2K-1 

= 0.09 Wm-2K-1 

Random-normal: 

= 8.9 days 

= 0.4 days 

= -1.13 Wm-2K-1 

= 0.09 Wm-2K-1 

Fast cloud 

feedbacka (initial 

transient SST 

patterns), 

 Clouds 

Random-normal: 

= -0.43 Wm-2K-1 

= 0.33 Wm-2K-1 

Random-normal: 

= 8.9 days 

= 0.4 days 

= -0.11 Wm-2K-1 

= 0.26 Wm-2K-1 

Snow + sea-ice 

albedo climate 

feedbacka, albedo 

Random-normal: 

= -0.37 Wm-2K-1 

= 0.10 Wm-2K-1 

Random: 

Min. = 0.5 years, 

Max. = 5.0 years 

= -0.34 Wm-2K-1 

= 0.10 Wm-2K-1 

Cloud – spatial 

SST adjustment 

feedbackb, 

SlowCloud 

Random-normal: 

= -0.47 Wm-2K-1 

= 0.30 Wm-2K-1 

 

Random: 

Min. = 20 years, 

Max. = 45 year.

= -0.27 Wm-2K-1 

= 0.28 Wm-2K-1 
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Table 2: Observational constraints and posterior simulated ranges. All constraints 

represent 90 or 95 % uncertainty ranges in the observed quantities. See Goodwin et al. (2018) 

for details. 

Observational 

constraint 

Observation-

consistent range 

Comment/References Posterior 95 % 

range 

Global mean 

temperature anomaly, 

1986-2005 relative to 

1850-1900 

0.55 to 0.67 °C Constraint amended from 

2003-2012 period in 

Goodwin et al. (2018) to 

1986-2005 period here, so 

that the final time-average 

includes a significant 

volcanic eruption. Range 

based on 90% 

observational range from 

IPCC (2013). 

0.55 to 0.67 °C 

Global mean 

temperature anomaly, 

2007-2016 relative to 

1971-1980 

0.56 to 0.69 °C Constraints and ranges as 

used in Goodwin et al. 

(2018). Based on: (Morice 

et al. 2012; GISTEMP, 

2018; Hansen et al., 2010; 

Smith et al., 2008; Vose et 

al., 2012) 

0.57 to 0.69 °C 

Global mean 

temperature anomaly, 

2007-2016 relative to 

1951-1960 

0.54 to 0.78 °C 0.63 to 0.76 °C 

Global mean sea-

surface temperature 

anomaly, 2003-2012 

relative to 1850-1900 

0.56 to 0.68 °C Constraint and range as 

used in Goodwin et al. 

(2018). Based on 

(Kennedy et al., 2011; 

Huang et al., 2015) 

0.56 to 0.68 °C 

Whole ocean heat 

content anomaly, 

2010 relative to 1971 

117 to 332 ZJ Constraints and ranges as 

used in Goodwin et al. 

(2018). Based on (Levitus 

et al., 2012; Giese et al., 

2011; Balmaseda et al., 

2013; Good et al., 2013; 

Smith et al., 2018; Cheng 

et al., 2017) 

152 to 337 ZJ 

Upper 700m ocean 

heat content 

anomaly, 2010 

relative to 1971 

98 to 170 ZJ 103 to 171 ZJ 

Terrestrial carbon 

uptake, 2011 relative 

to preindustrial 

70 to 250 PgC Constraint and range as 

used in Goodwin et al. 

(2018). Based on IPCC 

(2013) 

95 to 253 PgC 

Rate of terrestrial 

carbon uptake, 2000 

to 2009 

1.4 to 3.8 PgC yr-1 Constraint and range as 

used in Goodwin et al. 

(2018). Based on IPCC 

(2013) 

1.3 to 3.6 PgC yr-1 

Ocean carbon uptake, 

2011 relative to 

preindustrial 

125 to 185 PgC Constraint and range as 

used in Goodwin et al. 

(2018). Based on IPCC 

(2013) 

126 to 181 PgC 
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Table 3: Constrained climate sensitivity estimates for multiple response timescales. 

 

Response timescale, 

  

Median Climate 

Sensitivity 

66% range in 

Climate Sensitivity 

95 % range in 

Climate Sensitivity 

0.1 years 1.9 °C 1.7 to 2.2 °C 1.5 to 2.6 °C 

1 years 2.1 °C 1.8 to 2.4 °C 1.6 to 2.8 °C 

10 years 2.4 °C 2.1 to 2.9 °C 1.8 to 3.4 °C 

100 years 2.9 °C 2.3 to 3.5 °C 1.9 to 4.6 °C 
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Figure 1: The constrained evolution of climate sensitivity over multiple response 

timescales. (a) Estimates of the climate sensitivity (°C) from multiple studies (black and 

gray) compared to the posterior history matched WASP ensembles in this study evaluated 

over multiple response timescales ranging from 10-1 to 102 years (colors). Dots are best 

estimates (using median from distributions for this study), thick solid lines are 66 % ranges 

and dotted lines are 95 % ranges. (b) The frequency density distributions of climate 

sensitivity in the posterior history matched WASP ensembles over multiple response 

timescales. (c) The climate sensitivity (°C) over multiple response timescales in the posterior 

history matched WASP ensemble (blue, lines and shading show median and uncertainty 

ranges).  
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Figure 2: Time evolution of climate feedback over multiple timescales. (a) Schematic of 

different climate feedback processes considered in this study, and their characteristic 

response timescales. (b) The climate feedback over different response timescales in the initial 

prior model ensemble (grey: shaded area and dotted lines, showing 95% range) and in the 

final posterior history matched ensemble (blue, line is median, dark blue shading is 66% 

range, light blue shading is 95 % range). Also shown for comparison is the Planck sensitivity 

(green). 
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Figure 3. Applied radiative forcing over time. (a) Radiative forcing over time from 

multiple sources in the posterior history matched model ensemble, showing median (line) and 

95% range (shading). The sources of radiative forcing are: atmospheric CO2 (red), Well 

mixed Greenhouse Gasses (WMGHG) other than CO2 (blue), tropospheric aerosols (orange), 

volcanic stratospheric aerosols (purple), and solar forcing (green). (b) The total radiative 

forcing from all sources, Rtotal, over time in the posterior history matched model ensemble 

(line is median, shaded area is 95% range). All radiative forcings are annually smoothed with 

the exception of volcanic aerosols, which have a monthly resolution. 
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Figure 4. Observed and simulated temperature anomaly over time. (a) Annual mean 

temperature anomaly from 1861 to 2020. Shown are observations to (black: solid line is 

HadCRUT4 from 1861-2017, dotted line is GISTEMP from 1880 to 2017) and simulated 

temperature anomaly from the posterior WASP history matched ensemble of simulations 

with modified energy balance (blue, lines and shading as Figure 1b), and from 13 CMIP5 

models (beige shading showing range). All annual temperature anomalies are shown relative 

to the pre-1900 average (Appendix B). (b) Monthly temperature anomaly before and after the 

eruption of Mt. Pinatubo from observations (black, as panel a) and the posterior history 

matched WASP ensemble simulations (blue, as panel a), and the AOD (red). Both observed 

and simulated monthly temperature anomalies are shown relative to the 2-year average prior 

to the eruption of Mt. Pinatubo. 
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Figure 5: Warming over the 21st century. Future warming projections from the posterior 

history matched WASP ensemble (blue, line and shading as figure 1b) and a range of 13 

CMIP5 Earth system models (beige shading showing range; see Appendix) for (a) RCP8.5 

and (b) RCP4.5 scenarios. Also shown are observed warming from 2000 to 2017 (black lines: 

solid is HadCRUT4, dotted is GISTEMP). 

 


