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            R
educing the rate of biodiversity loss 

and averting dangerous biodiver-

sity change are international goals, 

reasserted by the Aichi Targets for 2020 by 

Parties to the United Nations (UN) Conven-

tion on Biological Diversity (CBD) after fail-

ure to meet the 2010 target ( 1,  2). However, 

there is no global, harmonized observation 

system for delivering regular, timely data on 

biodiversity change ( 3). With the fi rst plenary 

meeting of the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosys-

tem Services (IPBES) soon under way, part-

ners from the Group on Earth Observations 

Biodiversity Observation Network (GEO 

BON) ( 4) are developing—and seeking con-

sensus around—Essential Biodiversity Vari-

ables (EBVs) that could form the basis of 

monitoring programs worldwide.

Despite progress in digital mobilization 

of biodiversity records and data standards 

( 5), there is insuffi cient consistent national or 

regional biodiversity monitoring and sharing 

of such information. Along with inadequate 

human and financial resources ( 6), a key 

obstacle is the lack of consensus about what 

to monitor. Many initiatives collect data that 

could be integrated into an EBV global obser-

vation network (see the table), though impor-

tant gaps remain. Different organizations and 

projects adopt diverse measurements, with 

some important biodiversity dimensions, such 

as genetic diversity, often missing ( 7).

The EBV process is inspired by the 

Essential Climate Variables (ECVs) that 

guide implementation of the Global Climate 

Observing System (GCOS) by Parties to 

the UN Framework Convention on Climate 

Change (UNFCCC) ( 8). EBVs, whose devel-

opment by GEO BON has been endorsed by 

the CBD (Decision XI/3), are relevant to deri-

vation of biodiversity indicators for the Aichi 

Targets ( 9). Although CBD biodiversity indi-

cators are designed to convey messages to 

policy-makers from existing biodiversity data 

( 1), EBVs aim to help observation communi-

ties harmonize monitoring, by identifying how 

variables should be sampled and measured.

Given the complexity of biodiversity 

change ( 3), the challenge of developing a 

global observation system can appear insur-

mountable. Nearly 100 indicators have been 

proposed for the 2020 CBD targets (ongoing 

work seeks to identify a more limited subset) 

( 9). Two-thirds of reports recently submitted 

by Parties to the CBD lacked evidence-based 

information on biodiversity change ( 10).

EBVs help prioritize by defi ning a mini-

mum set of essential measurements to cap-

ture major dimensions of biodiversity change, 

complementary to one another and to other 

environmental change observation initia-

tives. EBVs also facilitate data integration by 

providing an intermediate abstraction layer 

between primary observations and indica-

tors (fi g. S1). An EBV estimating population 

abundances for a group of species at a loca-

tion sits between raw observations (e.g., from 

different sampling events or methods) and an 

aggregated population trend indicator that 

averages multiple species and locations.

Essential Biodiversity Variables in Practice

We defi ne an EBV as a measurement required 

for study, reporting, and management of 

biodiversity change. Hundreds of variables 

potentially fi t this defi nition. We developed 

and tested a process, still ongoing, to identify 

the most essential ( 11). Dozens of biodiver-

sity variables were screened to identify those 

that fulfi ll criteria on scalability, temporal sen-

sitivity, feasibility, and relevance. These vari-

ables were scored for importance, checked for 

redundancy, and organized into six classes on 

the basis of commonalities, general enough 

for use across taxa and terrestrial, freshwater, 

and marine realms (see the table).

Often, it is not possible to generalize 

observations from point locations to the 

regional scale. Variables selected as EBVs 

harness remote sensing (RS) to measure con-

tinuously across space (e.g., habitat struc-

ture), or local sampling schemes that can 

be integrated to enable large-scale general-

izations. For instance, citizen scientists con-

tribute locally to species population monitor-

ing across extensive regions ( 12). Ecosystem 

function or community composition vari-

ables often need intensive in situ measure-

ments feasible only at a few locations, but 

models and proxies detectable by RS can 

be used to extrapolate from point locations 

to the regional scale ( 13,  14). Such models 

are also important to predict the response of 

EBVs (e.g., species distributions) to envi-

ronmental drivers ( 15), and can be used to 

develop scenarios exploring different policy 

options ( 16), a core activity of IPBES.

Many biodiversity assessments empha-

size species inventories, e.g., identifi cation 

of all species in a region, and there have been 

calls for redoubled efforts to describe all 

species in the world ( 17). The EBV frame-

work instead emphasizes repeated measures 

for the same taxa at the same locations or 

regions mainly at short-term intervals (1 to 5 

years), although a few may be medium term 

(10 to 50 years).

Key determinants of observation sys-

tem feasibility are the number of variables 

that need monitoring and their measurabil-

ity. Although determination of the 50 ECVs 

requires elaborate observation and model-

ing systems, the end result is often outwardly 

simple (e.g., air temperature or pressure) ( 8). 

This is also true of some EBVs, particularly 

those related to ecosystem structure and func-
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tion. However, EBVs relating to species popu-

lations or traits and to genetic or community 

composition require representative sampling 

across taxonomic groups or community types. 

These EBVs need to balance specifi city and 

generality, enabling valid aggregation of data 

from multiple monitoring programs, while 

allowing for fl exibility in the species or taxo-

nomic groups addressed by these programs.

Variables selected as EBVs fi ll a niche 

not covered by global observation initiatives 

looking at environmental pressures [e.g., 

GCOS ( 8), Essential Ocean Variables ( 18)]. 

An EBV such as species abundance provides 

data for indicators such as the Living Planet, 

Wild Bird, and Red List indices (LPI, WBI, 

and RLI) (see the table). Assessing ecosystem 

services (ES) requires knowledge of changes 

in benefi cial species, functional groups, or 

ecosystem processes; additional physical, 

social, and economic data (fi g. S1) can be 

obtained from valuation studies, surveys, 

and national statistics ( 19). Complemen-

tary spatial information on responses imple-

mentation (e.g., coverage of protected areas) 

can inform indicators of the effectiveness of 

policy and management (fi g. S1). This fun-

damental, but fl exible, role of EBVs confers 

robustness to the system: EBVs are insulated 

from changing technologies at the observa-

tion level and from changing approaches at 

the indicator level.

Building Consensus and Capacity

Identifi cation of EBVs and defi nition of sam-

pling protocols are done by an open process 

that requires engagement of scientifi c, pol-

icy, and other communities. Major roles can 

be played by IPBES, national biodiversity 

authorities, space agencies, nongovernmen-

tal organizations, and citizen-science com-

munities. Information on the EBV process 

is updated at ( 11); written contributions can 

be sent to GEO BON. Side events will be 

organized in scientifi c and policy meetings 

over the next year. This will refi ne the EBV 

list, which, once stable, will periodically be 

updated by GEO BON in a process similar to 

that used for ECVs ( 8).

Coordination of sampling schemes by 

GEO BON across countries and scales can 

minimize costs and improve spatial repre-

sentativeness. Developing suitable fi nancial 

mechanisms to share costs between develop-

ing countries, where most biodiversity occurs, 

and developed countries, which share in the 

benefi ts but drive many of the pressures ( 20), 

will play a key role in the development of a 

truly global system. We hope that EBVs will 

catalyze investment in biodiversity observa-

tions, as ECVs have done for climate. 
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Examples of candidate Essential Biodiversity Variables

Allelic diversityGenetic

composition 

EBV

class

EBV 

examples

Measurement and scalability Temporal

sensitivity

Feasibility Relevance for CBD targets

and indicators (1,9)

Generation

time

1 to 5 

years

Genotypes of selected species 

(e.g., endangered, domesticated) 

at representative locations. 

Data available for many species and 

for several locations, but little global 

systematic sampling.

Targets: 12, 13.

Indicators: Trends in genetic diversity of selected 

species and of domesticated animals and cultivated 

plants; RLI.

Taxonomic

diversity

Community

composition 

5 to >10

years 

Ongoing at intensive monitoring sites 

(opportunities for expansion). 

Metagenomics and hyperspectral RS 

emerging. 

Targets: 8, 10, 14.                                                             

Indicators: Trends in condition and vulnerability of 

ecosystems; trends in climatic impacts on 

community composition.

Consistent multitaxa surveys and 

metagenomics at select locations. 

Habitat

structure 

Ecosystem

structure 

RS of cover (or biomass) by height 

(or depth) globally or regionally.

Global terrestrial maps available with 

RS (e.g., Light Detection and Ranging). 

Marine and freshwater habitats mapped 

by combining RS and in situ data.

Targets: 5, 11, 14, 15.

Indicators: Extent of forest and forest types; 

mangrove extent; seagrass extent; extent of 

habitats that provide carbon storage. 

Abundances

and 

distributions

Species 

populations

PhenologySpecies 

traits

1 to >10

years

Counts or presence surveys for 

groups of species easy to monitor or 

important for ES, over an extensive 

network of sites, complemented 

with incidental data. 

Standardized counts under way for 

some taxa but geographically 

restricted. Presence data collected for 

more taxa. Ongoing data integration 

efforts (Global Biodiversity 

Information Facility, Map of Life).

Targets: 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15.

Indicators: LPI; WBI; RLI; population and extinction 

risk trends of target species, forest specialists in 

forests under restoration, and species that provide 

ES; trends in invasive alien species; trends in 

climatic impacts on populations.  

1 yearTiming of leaf coloration by RS, 

with in situ validation.

Several ongoing initiatives 

(Phenological Eyes Network, 

PhenoCam, etc.)

Targets: 10, 15.

Indicators: Trends in extent and rate of shifts of 

boundaries of vulnerable ecosystems.  

Nutrient

retention 

Ecosystem

function 

1 yearNutrient output/input ratios 

measured at select locations. 

Combine with RS to model regionally. 

Intensive monitoring sites exist for N 

saturation in acid-deposition areas and 

P retention in affected rivers.

Targets: 5, 8, 14. 

Indicators: Trends in delivery of multiple ES; trends 

in condition and vulnerability of ecosystems.  
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